ARE YOU READY FORTHE FUTURE?

Learning Objectives

- Understand the critical nature of early engagement of all stakeholders and what key factors should be considered when doing new buildings, expansion, or renovation.
- Learn how we are designing space for efficiency and flexibility and how each can be incorporated in plans.
- Identify innovative technologies that are being considered and how to implement them into a facility.
- Learn how prefabrication/integrated systems are creating efficiencies and how they differ from traditional construction.
- Understand alternative financing and how to implement in a project.

Rachel Hendrickson AIA, NCARB, LEED AP Healthcare Principal

Rachel is a Principal and Architect at Wold Architects and Engineers with a passion for healthcare. With over 23 years of healthcare experience in design, planning, real estate development and construction, Rachel brings creativity and a collaborative spirit to creating the best delivery models for our communities. Her expertise includes leading healthcare projects through Lean Methodology to bring innovative and sustainable design solutions that provide an exemplary experience for all.
Rachel also currently serves as a board member at Allina Health United Hospital – Hastings Regina Hospital.

Jon Vollmer LEED AP Price Ultrasuite + Climate Representative

With 20 years of experience in the HVAC system sales and design build mechanical contracting, Jon has a unique understanding of manufacturing and design, engineering, and construction. For much of his career Jon has been working to find the highest value for customers by understanding needs, project scope, and most importantly real time costs. Jon graduated from UW-Madison with degrees in Electrical Engineering and Computer Sciences. He spent 10 years working for Harris Mechanical in Preconstruction and has spent the last 3 years working for TMS Johnson, a manufacturer's representative, dedicated the majority of his time to Operating Room product development..

Mark Mineau Sales Representative

Mark attended The University of Wisconsin – Madison, earning a degree, followed by a MBA at Cardinal Stritch University. He has 20+ years of experience working for Stryker in infrastructural design around surgery, emergency departments, intensive care units, Endoscopy departments, ambulatory surgery centers, and really anywhere else needed. His focus has been on maximizing infrastructure design and implementation all in an effort to add safety, efficiencies, and simplicity to surgery. He has a strong passion for making sure people have access to healthcare so that sickness, injury, disease, or accidents don't keep them from life's daily experiences for very long if at all possible. He's motivated professionally by all of the nurses & surgeons he works with on a daily basis, allowing their strong passion for care rub off on him personally, his design principles, and life as a whole.

Brian Evan PE, ASSOCIATE Mechanical Engineering Principal

Brian graduated from the University of Minnesota – Duluth with a degree in Mechanical Engineering. Brian's passion for design started when he was a kid, designing and building all kinds of contraptions in his grandfather's woodshop. He has taken that passion and channeled it over the past 13+ years to partner with clients to create efficient and cost-effective facilities to meet the needs of their community best. Brian's experience gives him a deep understanding of sustainable and seamless mechanical systems' high-level expectations. His healthcare knowledge leads to the design of efficient and reliable systems that create comfortable environments for patients, their families, and staff. Healthcare is a universal need, and he aims to design state-of-the-art healthcare facilities where he would feel very comfortable sending his own family members for care.

Wold Architects and Engineers: Sitha graduated from the University of Minnesota with a degree in Electrical Engineering. A science kit gift and playing the Oregon Trail on an Apple II computer hooked Sitha into the world of software and electronics. The need to figure out how things work and always wanting to learn more has led to an 18+ year career collaborating on dynamic solutions for each client's unique needs. He has experience designing electrical distribution, generators, lighting, voice/data, nurse call, security and fire alarm systems for high performing healthcare facilities. Sitha understands that reliable and scalable systems are a requirement in a world where connected technology, demand for more power and managing the unexpected are the norm.

PLANNING

SYSTEM INTEGRATION

ROBOTICS

MECHANICAL + ELECTRICAL INFRASTRUCTURE

FINANCING

PLANNING

PLANNING – Flexible Spaces

DATA EXPANSION

PLANNING – Flexible Spaces

ROOM FLEX IBILITY

PLANNING-Modular Wall Systems

PLANNING-Space Needs

PLANNING-Space Needs

CentraCare First in World to Use 4D Hologram Technology to Successfully Complete Structural Heart Procedure

Published Jun 23, 2021 in Heart & Vascular, Media Releases Author: CentraCare

EchoPixel's pre-planning and intraoperative technologies reduced complex heart procedure time while improving quality of outcomes

CentraCare, one of the largest health systems in Minnesota, has successfully completed the first structural heart procedure in the world

https://www.centracare.com/blog/2021/june/cent racare-first-in-world-to-use-4d-hologram-tec/

Texas hospital introduces hologram for doctor-patient visits

- Holobox projects lifesize hologram of doctor for real-time patient consults
- The device's goal is to replace in-person visits, reduce patient wait times
- Hospital CEO: Holograms are more engaging than a Zoom or a telehealth call

Stephanie Haines Updated: JUL 3, 2024 / 08:12 AM CDT

https://abcnews.go.com/Health/texas-hospital-reportedly-1st-us-holograms-doctor-patient/story?id=111435198

https://memory-alpha.fandom.com/wiki/The_Doctor "Welcome to the future!" -Dr. Lewis Zimmerman

-Dr. Lewis Zimmerman Chief Medical Officer USS Voyager-A

PLANNING - Got Staff Issues?

https://www.med.stanford.edu/news/all-news/2019/11/robots-jc the-workforce-at-the-new-stanford-hospital-.html

HVAC CEILING

ELECTRICAL

MEDICAL GAS

INTEGRATION

SYSTEM IN TEGRATION WALLS

	Factory Pre-welded Grid, Laminar Flow Diffusers, Perimeter Drywall	System, Perimeter Drywall
Total Installed Cost	\$45,643	\$46,981
Total Install Time	144 Hours	48 Hours
Welded Grid (shown in green)	\$4,736 (172 sq. ft.)	\$446 (8 sq. ft.)
Flush Ceiling Panel (shown in orange)	\$390 (4 panels)	\$390 (4 panels)
Air Distribution Product (shown in blue)	\$4,457 (10 LFD diffusers)	\$40,625 (80 sq. ft. Ultrasuite)
Surgical Lighting (shown in yellow)	\$19,500 (10 Surgical 2 ft. x 4ft. lights)	N/A
Drywall Installation	\$2,760 (24 hrs)	\$2,760 (24 hrs)
Mechanical Installation	\$9,200 (80 hrs)	\$1,840 (16 hrs)
Electrical Installation	\$4,600 (40 hrs)	\$920 (8 hrs)

ROBOTICS

Workflow: Intra-op

Messaging:

- Repair Notifications
- Preference Card
- SPD/EVS
- Family

Status Cameras:

- Improved visibility into any area of hospital
- Monitor patient care environments to help minimize room turnover time

Workflow: Patient Engagement

(((•)))

Design: Clinical/Robotic

Fortress

Modular wall system

Built with your future in mind

Powder coat

- Full sheet
- Wainscot (top 60% of wall)
- Multiple color options

Murals

- Half panel with facility logo
- Screen printed murals

Stainless steel

- Full panel 304 SS
- 1.22mm thickness

Fortress customization

Fortress makes it easy to customize your OR with options such as flush-mounted screens, glass panel whiteboards, ElectraView, and more.

Gaskets

- Multiple color options
- Watertight

Recessed monitors

 Installed flush with the wall

ElectraView privacy glass

- Automated blinds
- Fogging

Additional add ons

- Whiteboard
- Perioperative checklist
- Half-panel magnetic glass

Marries Spange Share &		
Personalizer	Peters') Surro	
424		
Lape		
Fider		
Heedler		
Boole Type		
Kine:		
Cathorabbi		
Viccel Impri		
Pearluter		
Beading		
CipBalt		
uturies.		
stat, bally		

MECHANICAL & ELECTRICAL INFRASTRUCTURE

Campus Infrastructure:

- Hospital HVAC systems
 - Continued shift towards energy-efficient products
 - Implementation of systems that operate on natural energy sources

Surgery Infrastructure:

- Mechanical Capacity
 - OR Robotics require precise temperature and humidity levels
 - Existing HVAC systems may not be capable of maintaining safe temperature and humidity levels
 - Dessicant dehumidifiers can help remove moisture from the air and prevent condensation
 - Fan coil retrofit potential lower cost alternative

Infrastructure:

- Wall space
 - Nitrogen control panel
 - Med gas outlets
 - Low return registers
 - Pressure monitors

Infection control Infrastructure:

- AHU enhanced filtration options
- Ultraviolet (UV) lights
- Needle point bipolar ionization

MERV Rating	Average Particle Size Efficiency in Microns	Filtration Level
1-4	3.0 - 10.0 less than 20%	Low filtration
5	3.0-10.0 less than or equal to 20%	Basic filtration
6	3.0-10.0 less than or equal to 35%	Basic filtration
7	3.0-10.0 less than or equal to 50%	Basic filtration
8	1.0-3.0 less than or equal to 20% 3.0-10.0 less than or equal to 70%	Good filtration
9	1.0-3.0 less than or equal to 35% 3.0-10.0 less than or equal to 75%	Good filtration
10	1.0-3.0 less than or equal to 50% 3.0-10.0 less than or equal to 80%	Better filtration
11	0.30-1.0 less than or equal to 20% 1.0-3.0 less than or equal to 65% 3.0-10.0 less than or equal to 85%	Better filtration
12	0.30-1.0 less than or equal to 35% 1.0-3.0 less than or equal to 80% 3.0-10.0 less than or equal to 90%	Better filtration
13	0.30-1.0 less than or equal to 50% 1.0-3.0 less than or equal to 85% 3.0-10.0 less than or equal to 90%	Best filtration
14	0.30-1.0 less than or equal to 75% 1.0-3.0 less than or equal to 90% 3.0-10.0 less than or equal to 95%	Best filtration
15	0.30-1.0 less than or equal to 85% 1.0-3.0 less than or equal to 90% 3.0-10.0 less than or equal to 95%	Best filtration
16	0.30-1.0 less than or equal to 95% 1.0-3.0 less than or equal to 95% 3.0-10.0 less than or equal to 95%	Best filtration
НЕРА	0.3 at least 99.97% ⁵	Best filtration

Infrastructure:

• Is there capacity?

Infrastructure:

- Normal, Critical, Equipment and Optional branches
- Space for receptacles, lighting, isolation panels and mechanical units

ELECTR/CAL

Infrastructure:

• Opportunity to revisit standards

Infrastructure:

• Metering may be needed to determine capacity

ELECTR/CAL

Infrastructure:

• Are code required upgrades needed?

Infrastructure:

• Generator distribution panel.

Infrastructure:

• ATS in dedicated room

Infrastructure:

• Portable generator docking station

Infrastructure:

- \circ Multiple isolation power panelboards.
- Dimming panel for integrated laminar flow diffuser.

Infrastructure:

• Coordination with architectural, mechanical, structural and medical equipment

Infrastructure:

• Data/Audiovisual Cabinet Location and Cooling Needs

Other Considerations:

• Above Ceiling – low voltage wiring issues and space

Other Considerations:

• Vendor Drawings

KEY ITEM	NAME	QTY
А	CHROMOPHARE SINGLE FLAT PANEL (1100)	1
В	CHROMOPHARE F628 SURGICAL LIGHT (1000) / F628 SURGICAL LIGHT (900)	
D	TELETOM TP-622-C/TC EQUIPMENT BOOM (1300) / SINGLE FLAT PANEL (900)	
Е	TELETOM TM-612-C/TC ANESTHESIA BOOM (1300) / SINGLE FLAT PANEL (900)	
н	2-BAY NURSE DOC STATION W/ EXTENSION COUNTERTOP - SPI3 TOUCH PANEL, SDC3 & PRINTER - HOSPITAL PROVIDED PACS PC & NURSE PC	
J	SWITCHPOINT INFINITY 3	
Κ	CHROMOPHARE SK ENCLOSURE	
L	CHROMOPHARE WALL CONTROL PANEL (RECESSED)	1
м	FLUSH RECTANGULAR CEILING SPEAKER	2
Ν	WALL PLATES FOR AUX VIDEO CONNECTIONS	3

NOTES: (UNLESS OTHERWISE SPECIFIED)

CONDUIT RUN ITEM - ITEM	CONDUIT QTY	
A - J	1	1 ¹ / ₄
B - K	2	1"
D - J	1	1 1/4
D - J	2	2"
E - J	1	1 1 <u>4</u>
E - J	1	2"
L - K	1	1"
K - *	1	1"
M - J	1	3" 4
N - J	1	2"

Other Considerations:

• Phasing

Financing:

• How can I afford this?

Inflation Reduction Act Tax Credits:

- Lighting, HVAC, building envelope.
- Energy savings measured against the latest ASHRAE standard (90.1-2019)
- If local prevailing wages are paid and apprenticeship requirements are met deductions are increased.
- The domestic content bonus credit if equipment built with certain percentages of manufactured products that were produced or manufactured in the United States.

Rebates:

- Energy Design Assist (EDA) programs with utility incentives
 - Organizations include Willdan, Focus on Energy.
 - Find cost effective solutions to reduce energy and save money.
 - Prescriptive specific rebates
 - Custom Energy model based on selected systems. Evaluate design options for efficency, costs and incentives. Incentive rebated based on estimated first year energy savings.
 - Paid by the utility as part of legislation in order to reduce energy, enhance economic development and expand usage of energy efficent products.

NHREFCO

The National Healthcare, Research, and Education Finance Corporation

YOUR FUTURE STARTS NOW